| source_references |
[{"documentId": "batch-ab1be436-e79b-4 [{"documentId": "batch-ab1be436-e79b-436b-8f65-7bbd5d03d519-c311ea18-6f02-461b-936e-65a4bc6e17c6_chunk_17", "startIndex": 198, "endIndex": 200, "surroundingText": "and AI integration.", "extractionConfidence": 0.85, "extractionMethod": "LLM_EXTRACTION", "extractedAt": "2025-12-02T22:06:41.907443Z"}, {"documentId": "batch-ab1be436-e79b-436b-8f65-7bbd5d03d519-c311ea18-6f02-461b-936e-65a4bc6e17c6_chunk_17", "startIndex": 343, "endIndex": 345, "surroundingText": "ontology, unified platform, data standards, AI integration) and the organizational enablers", "extractionConfidence": 0.85, "extractionMethod": "LLM_EXTRACTION", "extractedAt": "2025-12-02T22:06:41.907464Z"}, {"documentId": "batch-ab1be436-e79b-436b-8f65-7bbd5d03d519-c311ea18-6f02-461b-936e-65a4bc6e17c6_chunk_17", "startIndex": 657, "endIndex": 659, "surroundingText": "operate at the speed, scale, and semantic precision required for multi-domain, multinational", "extractionConfidence": 0.85, "extractionMethod": "LLM_EXTRACTION", "extractedAt": "2025-12-02T22:06:41.907483Z"}, {"documentId": "batch-ab1be436-e79b-436b-8f65-7bbd5d03d519-c311ea18-6f02-461b-936e-65a4bc6e17c6_chunk_17", "startIndex": 886, "endIndex": 888, "surroundingText": "obstacles to achieving the speed, scale, and precision required in modern, multi-domain warfare.", "extractionConfidence": 0.85, "extractionMethod": "LLM_EXTRACTION", "extractedAt": "2025-12-02T22:06:41.907500Z"}, {"documentId": "batch-ab1be436-e79b-436b-8f65-7bbd5d03d519-c311ea18-6f02-461b-936e-65a4bc6e17c6_chunk_17", "startIndex": 1623, "endIndex": 1625, "surroundingText": "enforcing standardized exchange formats, integrating AI/ML for time-sensitive tasks, and", "extractionConfidence": 0.85, "extractionMethod": "LLM_EXTRACTION", "extractedAt": "2025-12-02T22:06:41.907518Z"}]... |
| transformation_logs |
[{"id": "entity_transform_E-2aa4abc06a [{"id": "entity_transform_E-2aa4abc06ade", "stage": "TRANSFORMATION_STAGE_ENTITY_EXTRACTION", "method": "TRANSFORMATION_METHOD_LLM_PROMPT", "fromState": "raw_document_text", "toState": "extracted_entities", "finalConfidence": 0.85, "reasoning": "LLM-based entity extraction from document batch-ab1be436-e79b-436b-8f65-7bbd5d03d519-c311ea18-6f02-461b-936e-65a4bc6e17c6_chunk_17 using structured JSON schema", "modelName": "LLM_CLIENT", "startedAt": "2025-12-02T22:06:41.899086Z", "completedAt": "2025-12-02T22:06:41.899107Z"}]... |